Structure Reports

Online
ISSN 1600-5368

Qiao-Zhen Zhang,* Yan-Li Zhao, Xin Chen and Ming Yu

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail:
zhang_qiaozhen@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.131$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-1-(2,4-Dinitrophenyl)-2-[4-methoxy-3-(4-methylbenzenesulfonyloxy)benzylidene]hydrazine

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$, the isovanillin group makes dihedral angles of 31.69 (9) and $3.67(9)^{\circ}$ with the terminal 4-methylbenzene ring and the phenylhydrazine mean plane, respectively. The crystal structure is stabilized by a bifurcated intramolecular/intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond system and a weak non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen-bond contact.

Comment

Metal complexes based on Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). Consequently, a large number of Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001), such as models to mimic hydrolase in the hydrolysis of p-nitrophenyl picolinate (Li et al., 2005). We report here the synthesis and molecular structure of the title Schiff base compound, (I) (Fig. 1)

(I)

All bond lengths and angles are within normal ranges (Allen et al., 1987). The phenylhydrazine residue (C16-C21/ $\mathrm{N} 1 / \mathrm{N} 2$) is essentially planar, with an r.m.s. deviation for fitted atoms of $0.0126 \AA$. This plane makes dihedral angles of 28.67 (9) and 3.67 (9) ${ }^{\circ}$ with the benzene ring (C1-C6) and the isovanillin group (C8-C13/C15/O1/O4), respectively. In addition, the dihedral angle between the benzene ring ($\mathrm{C} 1-\mathrm{C} 6$) and the isovanillin group ($\mathrm{C} 8-\mathrm{C} 13 / \mathrm{C} 15 / \mathrm{O} 1 / \mathrm{O} 4$) is $31.69(9)^{\circ}$. The two nitro groups (O5/N3/O6) and (O7/N4/O8) and their attached aromatic ring (C16-C21) are not coplanar. The dihedral angles are $5.28(3)^{\circ}$ for $\mathrm{O} 5 / \mathrm{N} 3 / \mathrm{O} 6$ and $7.36(5)^{\circ}$ for O7/N4/O8.

A bifurcated intramolecular/intermolecular $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen-bond system is found in the crystal structure of (I) (Table 1). The intramolecular bond stabilizes the conformation of the molecule, while the intermolecular bond forms centrosymmetric dimers (Fig. 2). An O5 $\cdots \mathrm{O} 5(-x+3,-y+1$, $-z$) short contact of $2.860(3) \AA$ is observed in the dimer. There is also a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction, linking adjacent molecules into a one-dimensional extended chain.

Received 19 September 2006
Accepted 20 September 2006

Experimental

An anhydrous ethanol solution (50 ml) of 5-formyl-2-methoxyphenyl 4-methylbenzenesulfonate ($3.06 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous ethanol solution (100 ml) of 1-(2,4-dinitrophenyl)hydrazine $(1.98 \mathrm{~g}, 10 \mathrm{mmol})$ and the mixture stirred at 350 K for 5 h under nitrogen, giving a red precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound in 87% yield. Red single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a dimethylformamide solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S} \\
& M_{r}=486.46 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.365(2) \AA \\
& b=12.978(4) \AA \\
& c=13.547(4) \AA \\
& \alpha=62.937(4)^{\circ} \\
& \beta=88.904(5)^{\circ} \\
& \gamma=74.845(5)^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.928, T_{\max }=0.960
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& V=1105.5(6) \AA^{3} \\
& Z=2 \\
& D_{x}=1.461 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo K α radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, red
$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.131$
$S=1.03$
3876 reflections
309 parameters

Figure 1
The molecular structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Figure 2
A packing diagram for (I), with hydrogen bonds shown as dashed lines.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. \& Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
Li, J.-Z., Xu, B., Li, S.-X., Zeng, W. \& Qin, S.-Y. (2005). Transition Met. Chem. 30, 669-676.
Santos, M. L. P., Bagatin, I. A., Pereira, E. M. \& Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

